15 research outputs found

    Objective metrics for functional evaluation of upper limb during the ADL of drinking: application in SCI

    Full text link
    Three-dimensional kinematic analysis provides quantitative assessment of upper limb motion and is used as an outcome measure to evaluate movement disorders. The aim of the present study is to present a set of kinematic metrics for quantifying characteristics of movement performance and the functional status of the subject during the execution of the activity of daily living (ADL) of drinking from a glass. Then, the objective is to apply these metrics in healthy people and a population with cervical spinal cord injury (SCI), and to analyze the metrics ability to discriminate between healthy and pathologic people. 19 people participated in the study: 7 subjects with metameric level C6 tetraplegia, 4 subjects with metameric level C7 tetraplegia and 8 healthy subjects. The movement was recorded with a photogrammetry system. The ADL of drinking was divided into a series of clearly identifiable phases to facilitate analysis. Metrics describing the time of the reaching phase, the range of motion of the joints analyzed, and characteristics of movement performance such as the efficiency, accuracy and smoothness of the distal segment and inter-joint coordination were obtained. The performance of the drinking task was more variable in people with SCI compared to the control group in relation to the metrics measured. Reaching time was longer in SCI groups. The proposed metrics showed capability to discriminate between healthy and pathologic people. Relative deficits in efficiency were larger in SCI people than in controls. These metrics can provide useful information in a clinical setting about the quality of the movement performed by healthy and SCI people during functional activities

    A data-globe and immersive virtual reality environment for upper limb rehabilitation after spinal cord injury

    Full text link
    While a number of virtual data-gloves have been used in stroke, there is little evidence about their use in spinal cord injury (SCI). A pilot clinical experience with nine SCI subjects was performed comparing two groups: one carried out a virtual rehabilitation training based on the use of a data glove, CyberTouch combined with traditional rehabilitation, during 30 minutes a day twice a week along two weeks; while the other made only conventional rehabilitation. Furthermore, two functional indexes were developed in order to assess the patient’s performance of the sessions: normalized trajectory lengths and repeatability. While differences between groups were not statistically significant, the data-glove group seemed to obtain better results in the muscle balance and functional parameters, and in the dexterity, coordination and fine grip tests. Related to the indexes that we implemented, normalized trajectory lengths and repeatability, every patient showed an improvement in at least one of the indexes, either along Y-axis trajectory or Z-axis trajectory. This study might be a step in investigating new ways of treatments and objective measures in order to obtain more accurate data about the patient’s evolution, allowing the clinicians to develop rehabilitation treatments, adapted to the abilities and needs of the patients

    Gait kinematic analysis in patients with a mild form of central cord syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Central cord syndrome (CCS) is considered the most common incomplete spinal cord injury (SCI). Independent ambulation was achieved in 87-97% in young patients with CCS but no gait analysis studies have been reported before in such pathology. The aim of this study was to analyze the gait characteristics of subjects with CCS and to compare the findings with a healthy age, sex and anthropomorphically matched control group (CG), walking both at a self-selected speed and at the same speed.</p> <p>Methods</p> <p>Twelve CCS patients and a CG of twenty subjects were analyzed. Kinematic data were obtained using a three-dimensional motion analysis system with two scanner units. The CG were asked to walk at two different speeds, at a self-selected speed and at a slower one, similar to the mean gait speed previously registered in the CCS patient group. Temporal, spatial variables and kinematic variables (maximum and minimum lower limb joint angles throughout the gait cycle in each plane, along with the gait cycle instants of occurrence and the joint range of motion - ROM) were compared between the two groups walking at similar speeds.</p> <p>Results</p> <p>The kinematic parameters were compared when both groups walked at a similar speed, given that there was a significant difference in the self-selected speeds (p < 0.05). Hip abduction and knee flexion at initial contact, as well as minimal knee flexion at stance, were larger in the CCS group (p < 0.05). However, the range of knee and ankle motion in the sagittal plane was greater in the CG group (p < 0.05). The maximal ankle plantar-flexion values in stance phase and at toe off were larger in the CG (p < 0.05).</p> <p>Conclusions</p> <p>The gait pattern of CCS patients showed a decrease of knee and ankle sagittal ROM during level walking and an increase in hip abduction to increase base of support. The findings of this study help to improve the understanding how CCS affects gait changes in the lower limbs.</p

    Control of an ambulatory exoskeleton with a brain-machine interface for spinal cord injury gait rehabilitation

    Get PDF
    The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton-without any weight or balance support-for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation)

    Effectiveness of transcranial direct current stimulation on balance and gait in patients with multiple sclerosis: systematic review and meta-analysis of randomized clinical trials

    No full text
    Abstract Background Motor impairments are very common in neurological diseases such as multiple sclerosis. Noninvasive brain stimulation could influence the motor function of patients. Objective The aim of this meta-analysis was to evaluate the effectiveness of transcranial direct current stimulation (tDCS) on balance and gait ability in patients with multiple sclerosis. Additionally, a secondary aim was to compare the influence of the stimulation location of tDCS on current effectiveness. Methods A search was conducted for randomized controlled trials published up to May 2023 comparing the application of tDCS versus a sham or control group. The primary outcome variables were balance and gait ability. Results Eleven studies were included in the qualitative analysis, and ten were included in the quantitative analysis, which included 230 patients with multiple sclerosis. The average effect of tDCS on gait functionality was superior to that of the control group (SMD = -0.71; 95% CI, -1.05 to -0.37). However, the overall results of the tDCS vs. sham effect on static balance did not show significant differences between groups (MD = 1.26, 95% CI, -1.31 to 3.82). No significant differences were found when different locations of tDCS were compared. Conclusions These results reveal that tDCS is an effective treatment for improving gait ability with a low quality of evidence. However, the application of tDCS has no effect on static balance in patients with multiple sclerosis with very low quality of evidence. Similarly, there seems to be no difference regarding the stimulation area with tDCS

    Hybrid therapy of walking with Kinesis overground robot for persons with incomplete spinal cord injury: A feasibility study. Robotics and Autonomous Systems

    No full text
    Rehabilitation of walking ability is one of the most important objectives after a spinal cord injury. Robotic and neuroprosthetic technologies hold a considerable potential for driving walking rehabilitation therapies. However, new developments are needed in order to improve the walking rehabilitation interventions based in these technologies. We recently presented a cooperative control strategy of Kinesis, a lower limb exoskeleton for providing hybrid therapy of walking (Del-Ama, 2014). Its design aimed to actively manage muscle fatigue caused by surface electrical stimulation, and to implement the assist-as-needed control paradigm in which both stimulation and robotic controller cooperate with the residual functionality of the user. In this article we present three case studies for investigating the feasibility of the hybrid therapy of walking delivered with Kinesis in patients with incomplete spinal cord injury. Besides, the adaptability features of Kinesis stimulation–robot cooperative control are assessed, characterizing the behavior of the cooperative controller while providing hybrid therapy of walking. Patients with incomplete spinal cord injury participated in the experiments. The protocol consisted of walking with Kinesis during 6 min. Three configurations of the cooperative controller were tested for each patient in separate sessions in order to investigate its adaptability features. The immediate impact of the hybrid therapy of walking was assessed through several variables that represent the physiological impact, user–exoskeleton physical interaction, stimulation intensity and user subjective perception of the hybrid therapy of walking. Results show that the cooperative controller of Kinesis adapted to patient functional deficits and voluntary actions during walking, modulating stimulation and robotic assistance, which was the aim of the controller design. Nevertheless, no noticeable differences were observed in the comparison between compliant and trajectory exoskeleton control. Further work is envisioned regarding several aspects of hybrid walking control: stimulation control based on muscle activation estimate, improved semi-automatic control of walking, and improved muscle fatigue monitoring. The hybrid walking therapy was tolerated by the patients without adverse effects, along with a tolerable physical demand. This shows a potential for walking rehabilitation in motor incomplete SCI patients, guaranteeing further research on this topic.This work was supported by grant CSD2009-00067 HYPER-CONSOLIDERINGENIO 2010

    Novel kinematic indices for quantifying upper limb ability and dexterity after cervical spinal cord injury

    Get PDF
    Loss of motor function is a consequence after cervical spinal cord injury. Three-dimensional kinematic analysis equipments are used for quantifying human movements in clinical laboratories. These systems may provide objectivity to the patient assessments. Nowadays, the kinematic variables found in the literature have some defciencies, and the effcient management of these data sets is a demand and a challenge in the clinical setting. The aim of the present paper is to propose a set of novel kinematic indices, as a combination of kinematic variables, for quantifying upper limb motor disorders in terms of characteristics in relation to ability and dexterity such as accuracy, effciency, and coordination. These indices are defned for measuring patients’ motor performance during the activity of daily living of drinking from a glass. This task is included within the upper limb rehabilitative process that patients receive. The main contribution of this research, with the aim of detecting upper limb impairments in patients, consists of the proposal of three kinematic indices from experimental data, whose results are dimensionless and relative to a pattern of healthy subjects. We hope that kinematic indices proposed are a step toward the standardization of the quantitative assessment of movement characteristics and functional impairments

    Modular control of gait after incomplete spinal cord injury: Differences between sides

    No full text
    [Objectives]: The main goal of this study was to compare the modular organization of bilateral lower limb control in incomplete spinal cord injury (iSCI) patients during overground walking, using muscle synergies analysis. The secondary goal was to determine whether the similarity between the patients and control group correlate with clinical indicators of walking performance. [Setting]: This study was conducted in National Hospital for Spinal Cord Injury (Toledo, Spain). [Methods]: Eight iSCI patients and eight healthy subjects completed 10 walking trials at matched speed. For each trial, three-dimensional motion analysis and surface electromyography (sEMG) analysis of seven leg muscles from both limbs were performed. Muscle synergies were extracted from sEMG signals using a non-negative matrix factorization algorithm. The optimal number of synergies has been defined as the minimum number needed to obtain variability accounted for (VAF) ⩾90%. [Results]: When compared with healthy references, iSCI patients showed fewer muscle synergies in the most affected side and, in both sides, significant differences in the composition of synergy 2. The degree of similarity of these variables with the healthy reference, together with the composition of synergy 3 of the most affected side, presented significant correlations (P<0.05) with walking performance. [Conclusion]: The analysis of muscle synergies shows potential to detect differences between the two sides in patients with iSCI. Specifically, the VAF may constitute a new neurophysiological metric to assess and monitor patients’ condition throughout the gait recovery process.This work is part of the HYPER project ‘Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders’ (ref. CSD2009-00067) funded by CONSOLIDER-INGENIO 2010, and the project ASSOCIATE ‘A comprehensive and wearable robotics based approach to the rehabilitation and assistance to people with stroke and spinal cord injury’ (ref. DPI2014-58431-C4-1-R), both funded by the Spanish Ministry for Science and Innovation. This research has been also supported by the European Commission 7th Framework Program as part of the project BioMot (FP7-ICT-2013-10, grant agreement no. 611695)

    Atreatment based on a data glove and an immersive virtual reality environment

    Get PDF
    Purpose state: The aim of this preliminary study was to test a data glove, CyberTouch ,combined with a virtual reality (VR) environment, for using in therapeutic training of reaching movements after spinal cord injury (SCI). Method: Nine patients with thoracic SCI were selected to perform a pilot study by comparing two treatments: patients in the intervention group (IG)conducted a VR training based on the use of a data glove, CyberTouch for 2 weeks, while patients in the control group (CG) only underwent the traditional rehabilitation. Furthermore, two functional parameters were implemented in order to assess patient?s performance of the sessions: normalized trajectory lengths and repeatability. Results: Although no statistical significance was found, the data glove group seemed to obtain clinical changes in the muscle balance (MB) and functional parameters, and in the dexterity, coordination and fine grip tests. Moreover, every patient showed variations in at least one of the functional parameters, either along Y-axis trajectory or Z-axis trajectory. Conclusions: This study might be a step forward for the investigation of new uses of motion capture systems in neurorehabilitation, making it possible to train activities of daily living (ADLs) in motivational environments while measuring objectively the patient?s functional evolution
    corecore